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B.Sc. I SEMESTER [MAIN/ATKT] EXAMINATION

MAY - JUNE 2025

STATISTICS

[Introduction to Probability Theory]
[Open Elective]

[Max. Marks : 60] [Time : 3:00 Hrs.]

Note : All THREE Sections are compulsory. Student should not write any thing on question paper.
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[Section - A]

This Section contains Multiple Choice Questions. Each question carries 1 Mark. All
questions are compulsory.
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Q. 01

Q. 02

Q. 03

A dice is thrown the probability of gettinga 4 or 6 -

TH U BT ST 2, 4 IT 6 BT 3@ o &1 Uil —
a) 2/3 by 12

¢c) 173 d 1/4

If x is a random variable having its probability density function P(x) the E(x) is
called :

a) Arithmetic mean b) Geometric Mean

¢) Harmonic mean d) Weighted mean
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¢) TG HEY d) “IRT 9reg

For Binomial distribution with probability p of a success and ¢ of a failure the
relation between mean and variance 1s -
a) Mean < variance b) Mean > variance

¢) Mean = variance d) None of the above
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a) HEY < JEROT b) HEY > gEROT

¢) Y = GENo d) SWIFT H 9 BIE T8t
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Q. 04

Q. 05

In Hyper geometric h (K, N, M, n) if N—>cc and M/N = P, then hyper geometric
distribution reduce to -
a) Binomial distribution b) Geometric distribution

¢) Poisson distribution d) None of these
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The range of Beta distribution of first kind is -
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a) (-, o) by (O, 1)

¢) (0,) d) (-1, +D)

[Section - B]

This Section contains Short Answer Type Questions. Attempt any five questions in this
section in 200 words each. Each question carries 7 Marks.
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Q. 01 Define Probability. State and prove additive theorem of probability.
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Q. 02 What do you understand by Random Variables ? Define discrete and

continuous random variable with example.
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Q. 03 Explain the following concepts giving examples -

1) Equally likely events.

11) Independent events.

TR SHR (11 SqeRosl Bl FHASY —
1) TEGEE T |

i) WA TN |

Q. 04 Detfine Mathematical Expectation. State and prove its any three properties.
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Q. 05

Q. 06

Q. 07

Q. 08

Define moment generating function and write its any two properties.
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Define Bionomial Distribution and obtain its mean and variance.
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Describe the Exponential Distribution and obtain its mean and variance.
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Define the Beta Distribution of first kind and also find its mean and variance.
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[Section - (]

This section contains Essay Type Questions. Attempt any two questions in this section in
500 words each. Each question carries 10 marks.
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Q. 09

Q. 10

Q. 11

Q. 12

Detfine Poisson Distribution. Obtain its moment generating function, mean
and variance.
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State and prove Bayes Theorem.
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Define Normal Distribution. Obtain its moment generating function, median
and mode.
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Explain Negative Binomial Distribution. Obtain its mean and variance.
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